Richard Armitage is underutilized in math instruction, I feel

Richard Armitage and Daniela Denby-Ashe in episode 4 of North & South. Source:

~ by Servetus on March 16, 2017.

10 Responses to “Richard Armitage is underutilized in math instruction, I feel”

  1. Brilliant! The things we can learn from him! Obviously not just a pretty face!


  2. Wow! Such a coincidence! I just re- x (lost count ūüėČ ) watched this on YT only a few hours ago! Still gets to me after all these years. Too bad they didn’t release a CD of the sound track.


    • Yes,it is a pity. But on YT you can find the full sound track. Sometimes when I have to sew sth. or to seam I hear it as background music. Btw I don’t like sewing.


  3. Der Praxistest. So haucht man trockener Mathematik Leben ein.


  4. It’s nice to see your RA instruction extending beyond vocabulary and into STEM areas. Perhaps a chemistry lesson could be next?


    • ūüôā
      CHIMIE: Dans le Hobbit 2, je vous propose de vous pencher:
      – sur la nature chimique du gaz qui √©tourdit Bilbo Baggins (Bilbon Sacquet), dans la for√™t de Mirkwood (la For√™t Noire), des champignons, des plantes en d√©composition? CO2 CH4 H2S…?
      – ou l’√©tude des gaz d√©gag√©s par les poissons avari√©s. Leur nom savant sont m√©thylamines, compos√©s soufr√©s, ald√©hydes, acides gras volatils.

      PHYSIQUE: J’ai d√©j√† sugg√©r√© les execices:
      – sur la fusion de l’or. Est-ce que le volume de liquide en or est suffisant pour couvrir le dragon?( Il y a une version plus difficile pour classe pr√©paratoire d’ing√©nieurs scientifiques.
      – sur l’√©tude des lois de la m√©canique des fluides, pour l’√©pisode des barils: √©coulement laminaire versus √©coulement tourbillonnant, liquide fluide ou visqueux? (√©quation de Navier, √©quation de Navier-Stokes, √©quation d’Euler et th√©or√®me de Bernoulli….)
      Bon courage!


  5. Il y a t-il toujours une logique unique dans les math√©matiques? Non car 1+1 ne fait pas toujours 2. Incapable de vous l’expliquer moi-m√™me, je vous laisse dans les mains de Jin Pak, works at Balboa Rv Park, Written 13 Sep 2014.
    Conventional 1 + 1 = 2 True (sometimes!)
    Binary 1 + 1 = 10 There is no 2 in binary.
    Boolean logic 1 AND 1 = 1 This means True and True is True (see below).
    Roman or Egyptian 1 + 1 = 11 In unary number systems, two is represented by the symbol for one, twice.
    Greek + = The symbol is iota, which represents ten. or kappa is twenty.
    Mod 2 1 + 1 = 0 Modular arithmetic is circular. For Mod 2, you divide by 2, and the answer is the remainder. So 25 mod 2 is 1, and 12 mode 2 is 0.
    Rounding 1 + 1 = 3 This might surprise you! But you can get this effect with rounding. 1.4 + 1.4 = 2.8. But if each number is rounded to the nearest whole number, then you do get 1 + 1 = 3. Try it on the arithmetic calculator set to whole numbers.
    BODMAS 1 + 1 x 2 = 3
    not 4
    If you replace 1+1 with 2 before doing the multiplication, you will get the incorrect answer of 4.
    English one as a pronoun “If something happened to one and one didn’t know what to do…” You can’t replace one and one with two there!
    All right, this is a bit of fun! But it does show some important ideas. It’s important to realise that rounding can lead to unexpected results as above. It can happen in real life. For example, if you make a report of money, rounded to the nearest pound, then sum the unrounded money and round the result to the nearest pound, you may get a different answer than if you sum the rounded money. Perhaps it might be a good idea to say plus rather than and if that is what you mean, so you avoid confusion with Boolean AND.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: